skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Yongkang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Reactive small-molecule probes are widely used for RNA structure probing, however current approaches largely measure average RNA transcript dynamics and do not resolve structural differences that occur during folding or transcript maturation. Here, we present SNIPER-seq, an RNA structure probing method relying upon metabolic labeling with 2’-aminodeoxycytidine, structure-dependent 2’-amino reaction with an aromatic isothiocyanate, and high-throughput RNA sequencing. Our method maps cellular RNA structure transcriptome-wide with temporal resolution enabling determination of transcript age-dependent RNA structural dynamics. We benchmark our approach against known RNA structures and investigate the dynamics of human 5S rRNA during ribosome biogenesis, revealing specific structural changes in 5S rRNA loops that occur over the course of several hours. Taken together, our work sheds light on the maturation and coordinated conformational changes that take place during ribosome biogenesis and provides a general strategy for surveying evolving RNA structural dynamics across the transcriptome. 
    more » « less